UNIVERSITI UTARA MALAYSIA

FINAL EXAMINATION
FIRST SEMESTER SESSION 2008/2009

CODE/COURSE : QQM2053/ PERSAMAAN PEMBEZA
DATE : 15 NOVEMBER 2008 (SATURDAY)
TIME : 2:30 – 4:30 P.M. (2 HOURS)
VENUE : DSB K.T/WD

INSTRUCTIONS:

1. This book script contains TEN (10) questions in TEN(10) printed pages excluding the cover page.
2. Answer ALL the questions in the space provided.

MATRIC NO:______________________________

(in words) ___________________________
(in numbers) __________________________

IDENTITY CARD/PASSPORT NO : ___________________________

LECTURER :______________________________

GROUP : ___________________________ TABLE NO.: _____________

DO NOT OPEN THE PAGE UNTIL YOU ARE TOLD TO DO SO

CONFIDENTIAL
QUESTION 1 (4 MARKS)

a) Classify the given differential equations as an ordinary or partial.

 i) \(\frac{\partial^2 f}{\partial x^2} + y \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + \sin y = 0 \)
 (1 mark)

 ii) \((\sin z) \frac{dy}{dz} + \frac{\cos y}{z} = 0 \)
 (1 mark)

b) State the order and name of the dependent and independent variables for

 \[\frac{d^3 p}{dq^3} + \frac{d^2 p}{dq^2} p + 4q^2 = 0. \]
 (2 marks)

QUESTION 2 (6 MARKS)

Given the first order differential equation \(\frac{dy}{dx} - 3x\sqrt{x^2 + 1} = 0 \)

i) Write the equation in separable form.
 (2 marks)
ii) Find the general solution.

QUESTION 3 (10 MARKS)

The function \(y = \ln |xe^x - e^x + C| \) is general solution of \(\frac{dy}{dx} = xe^x - y \) where \(C \) is a constant.

i) Given \(y(1) = 0 \), find \(y(2) \) in four decimal places.

(3 marks)
ii) Apply Euler’s method to approximate the value of \(y(2) \) with step size \(h = 0.5 \). Give your answer in four decimal places. (6 marks)

iii) Calculate the error at \(x = 2 \). (1 mark)

QUESTION 4 (12 MARKS)

Given an exact equation \(\frac{dy}{dx} = \frac{2x - y^3 - pxy^4}{3xy^2 + 20x^2y^3} \).

i) Determine the \(M(x, y) \) and \(N(x, y) \) functions. (2 marks)
Determine the value of p if \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \). \hfill (4 \text{ marks})

Find the general solution. \hfill (6 \text{ marks})
QUESTION 5 (6 MARKS)

A chicken roast, initially at 50°F, is placed in a 375°F oven at 5:00 P.M. After 75 minutes it is found that the temperature $T(t)$ of the chicken roast is 125°F. By using Newton’s law of heating,

$$\frac{dT}{dt} = k(375 - T)$$

where t is time. How long does it take to reach 150°F?
QUESTION 6 (15 MARKS)

Given the differential equation and the initial value problem

\[y'' - 3y' + 2y = 3e^{-x} - 10 \cos 3x; \]
\[y(0) = 1, \quad y'(0) = 2 \]

Find,

\(i) \) the homogenous solution, \(y_h \). \((4 \text{ marks})\)

\(ii) \) the values of \(C, D \) and \(E \) if \(y_p = Ce^{-x} + D \cos 3x + E \sin 3x \). \((7 \text{ marks})\)
iii) the particular solution, $y(x)$ for the above differential equation.

(4 marks)

QUESTION 7 (4 MARKS)

Based on the above graph,

i) write the unit step function, $f(t)$.

(1 mark)
ii) by using the definition, find the Laplace transforms of \(f(t) \). (3 marks)

QUESTION 8 (7 MARKS)

Find the Laplace transforms for each the following:

a) \(f(t) = 3t^2 + t^5 \) (2 marks)

b) \(g(t) = 3e^{2t} \) (2 marks)
c) \[h(t) = t \sin 6t \]

(3 marks)

QUESTION 9 (6 MARKS)

Find the inverse Laplace transforms for each the following:

a) \[\frac{12}{s^3} \]

(2 marks)

b) \[\frac{1}{4s^2 + 9} \]

(4 marks)
QUESTION 10 (10 MARKS)

A spring is stretched 1.3 cm when a 1 kg mass is attached with damping constant $c = 8$. The equation of motion when the spring constant $k = 15$ is given by:

$$y'' + 8y' + 15y = 0$$
$$y(0) = 2, \quad y'(0) = -3.$$

i) Determine $L\{y'(t)\}$ and $L\{y''(t)\}$.

ii) Use the Laplace Transform to solve the initial value problem.

(2 marks)

(8 marks)