CONFIDENTIAL QQM2023

UNIVERSITI UTARA MALAYSIA

FINAL EXAMINATION
FIRST SEMESTER SESSION 2008/2009

CODE/SUBJECT NAME : QQM2023 / ALGEBRA LINEAR
DATE : 22nd NOVEMBER 2008 (SATURDAY)
TIME : 2.30 – 4.30 p.m. (2 HOURS)
VENUE : DMS

INSTRUCTIONS:
1. This book script contains TEN (10) questions in NINE (9) printed pages excluding the cover page.
2. Answer ALL questions in the space provided.

<table>
<thead>
<tr>
<th>MATRIC NO:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(in words)</td>
<td>(in numbers)</td>
</tr>
<tr>
<td>IC. NO:</td>
<td></td>
</tr>
<tr>
<td>LECTURER:</td>
<td></td>
</tr>
<tr>
<td>GROUP:</td>
<td></td>
</tr>
<tr>
<td>TABLE NO:</td>
<td></td>
</tr>
</tbody>
</table>

PLEASE DO NOT OPEN THIS SCRIPT UNTIL YOU ARE TOLD TO DO SO

CONFIDENTIAL
QUESTION 1 (6 MARKS)

State whether each of the following statements is true or false.

a) Every vector space that is generated by a finite set has a basis.

(..........................) (2 marks)

b) The length of a vector is equal to the square root of the inner product of the vector with itself.

(..........................) (2 marks)

c) Let \(L : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a linear transformation. If \(L(x) = L(x') \), then \(x \) and \(x' \) must be equal.

(..........................) (2 marks)

QUESTION 2 (11 MARKS)

Let \(\mathbf{u} = (2, 0, -1) \) and \(\mathbf{v} = (3, -4, 1) \).

(i) Find \(3\mathbf{u} + \mathbf{v} \).

(2 marks)

(ii) Determine whether \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal or not. Justify your answer.

(2 marks)

(iii) Determine the angle between \(\mathbf{u} \) and \(\mathbf{v} \).

(4 marks)
(iv) Find $u \times v$.

(3 marks)

QUESTION 3 (5 MARKS)

Given $P(3, -1)$ and $Q(0, 3)$.

(i) Find the length of \overrightarrow{PQ}

(3 marks)

(ii) Find a unit vector in the direction of \overrightarrow{QP}.

(2 marks)
QUESTION 4 (12 MARKS)

Given \(S = \begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \\ 1 & 0 \end{bmatrix} \) and \(v = \begin{bmatrix} 1 \\ 3 \\ -1 \\ 1 \end{bmatrix} \).

(i) Does \(S \) span \(v \)? Why or why not. (10 marks)

(ii) Does \(S \) span \(\mathbb{R}^4 \)? Explain. (2 marks)
QUESTION 5 (5 MARKS)
Determine whether the set of all triangular matrices $\begin{bmatrix} u_{11} & 0 \\ u_{21} & u_{22} \end{bmatrix}$ is a subspace of M_{22}.

QUESTION 6 (12 MARKS)
Given a matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$,

(i) determine a basis for row space of A.

(4 marks)
(ii) determine a basis for the column space of A.

(1 mark)

(iii) determine a basis for the nullspace of A.

(5 marks)

(iv) find the rank and nullity of A.

(2 marks)
QUESTION 7 (7 MARKS)

If \(x_1 = \begin{bmatrix} 2 \\ 6 \\ -18 \end{bmatrix}, \ x_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \text{ and } x_3 = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}, \)

(i) show that \(S = \{x_1, x_2, x_3\} \) is an orthogonal basis in \(R^3 \).

(3 marks)

(ii) determine whether \(S \) is an orthonormal basis or not. Justify your answer.

(2 marks)

(iii) determine whether \(x_1, x_2 \) and \(x_3 \) are linearly independent or not. Explain.

(2 marks)
QUESTION 8 (10 MARKS)

Find a matrix $A_{2 \times 2}$ that has eigenvalues $\lambda_1 = 1, \lambda_2 = 2$ and corresponding eigenvectors $x_1 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}, x_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ respectively.
QUESTION 9 (4 MARKS)

If $T : V \rightarrow R$ where $T(v_1) = 2$ and $T(v_2) = -3$, find $T(3v_1 + 2v_2)$. Assume that T is a linear transformation.

QUESTION 10 (8 MARKS)

Given $T : R^3 \rightarrow R^4$ where $T(x, y, z) = (x - y + 2z, x + y - z, 2x + z, 2y - 3z)$.

(i) Find $T(4, 1, -3)$.

(2 marks)
(ii) Find \(\ker(T) \)

(6 marks)